Noções de amostragem e Estimação:

  • Estatística Prática Para Cientistas de Dados: 50 Conceitos Essenciais

    Métodos estatísticos são uma parte crucial da ciência de dados; ainda assim, poucos cientistas de dados têm formação estatística. Os cursos e livros sobre estatística básica raramente abordam os tópicos sob a perspectiva da ciência de dados. Este guia prático explica como aplicar diversos métodos estatísticos em ciência de dados, ensina a evitar seu mau uso e aconselha sobre o que é importante e o que não é. Muitos recursos da ciência de dados incorporam métodos estatísticos, mas carecem de uma perspectiva estatística aprofundada. Se você está familiarizado com a linguagem de programação R e tem algum conhecimento estatístico, este guia fará a ponte de forma fácil e acessível. Com este livro, você aprenderá: - Por que a análise exploratória de dados é um passo prévio importante na ciência de dados - Como a amostragem aleatória pode reduzir o viés e resultar um conjunto de dados de maior qualidade, mesmo em big data - Como os princípios do design experimental resultam respostas definitivas - Como usar regressão para estimar resultados e detectar anomalias - Principais técnicas de classificação para prever a quais categorias um registro pertence - Métodos de aprendizado de máquina estatístico que “aprendem” com os dados - Métodos de aprendizado não supervisionado para extração de significado de dados não rotulados.

  • Elementos de Amostragem

    Este é um livro de técnicas de amostragem e optou-se por apresentar um curso de inferência para populações finitas, ressaltando a importância e consequências do plano amostral sobre as principais propriedades dos estimadores. Embora se destine principalmente a alunos de Bacharelado em Estatística este livro pode ser usado para cursos de outras áreas do conhecimento que envolvam seleção probabilísticas de amostras, exigindo-se pelo menos um curso de Estatística Básica.