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Analitico Vs Operacional
ANALYTICAL ML

Human-Driven Decisions

« Non time-sensitive « Low scale

Machine-Made Decisions

« Time sensitive « Direct connection to
« Low production « Little regulation « Real-time input data business impact
requirements « 1-person team

« Production service level « Regulations and compliance
agreement and scale - Large cross functional team
2021 TECHNOLOGY SPOTLIGHT
\%:/ The Emergence of MLOps

ML ENVIF{UNIVIENT

ML-Powered ML-Powered
Analysis/BI ‘ : ’ Product '

e.g. Sales Forecast, Demand Internal User/ e.g. Real-time fraud detection, Real-time Customer
Fmeu? t, Cl mﬂmm LTV Estimation Emp oyee pricing, Personalization, Chat Bots

MLOps: "conjunto padrao de praticas para Operacoes de

Machine Learning em grande escala”
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Figure T-MLOps focuses on intricacies of the ML lifecycle often neglected in the DevOps framework

Focused methodology to
accelerate the traditional
app development cycle
while maintaining efficiency
in delivery and predictable,
high levels of quality.

A process-oriented method
used to improve the quality
and reduce cycle time of data
analytics. DataOps applies to
the entire data lifecycle from
preparation through reporting.

DevSecOps

DevSecOps brings security
operations and deployment
together, ensuring that
everyone involved with the
software development life-cycle
is responsible for security.
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Focused on the life-cycle of a machine
learning model’s development and usage,
specifically aspects of machine learning  :
model operationalization and deployment. :
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COMMON GOALS OF OPERATIONAL ML

Most MLOps solutions often share common goals born from the problems encountered in Analytical ML solutions.
These include the need for auditability, performance across a variety of environments, transparancy into the func

tioning of a model, technology that enables the Al solution to scale, automation for model updates, and solving the
common issue of model drift.

Auditability: A given model will have multiple versions, a specific set of training data, and finely
tuned hyperparameters. Each must be carefully tracked for versioning and testing purposes

Different Environments: Different environments for data preparation, training, and
f,\ 2021 TECHNOLOGY SPOTLIGHT model deployment reduce speed and scalability of model deployment

\&/ The Emergence of MLOPs
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Model Transparency: Individual models are difficult to understand and/or
explain to others

Scalability: Models created from scratch for individual problems reduce deployment
speed because of the inability to reuse and recycle code

Model Drift: Models may lessen in accuracy over time as the statistical
properties the model tries to predict change in the real world
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Reproducible

Reproducibility and productivity are inextricably linked. It's
difficult to be productive when different team members can't
reproduce each others’ work. This is harder in ML than in seftware
because test & training data and metrics need to be versioned
alongside the code and environment.
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Collaborative

Concurrent collaboration - that is, collaboration without treading
on each others' toes - is essential. In ML this is harder than in
normal software engineering, because collaboration applies to
notebooks, data, models and metrics as well as code.
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Accountable

Models that are deployed without full provenance, a record of all
the steps taken to create the models, can fail to be compliant,
and are hard te debug. Maintaining this provenance record
manually slows you down and is error-prone, so automated

™

tooling is needed.

Continuous

You're not done when you ship. In order to continue delivering
value to the business, models must be retrained and statistically
monitored to compensate for model drift due to constant changes
in your business environment.

Source: mlops.community/manifesto/
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Machine Learning
Design Patterns

Solutions to Common Challenges in Data
Preparation, Model Building, and MLOps

Vallioppa Lakshmanan,

Sara Robinson & Michael Munn

Design Patterns 1-350

- Problema

« Solucéo

- Por que funciona

- Prdsy contras e alternativas



Design Pattern 26
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Design Pattern 25

Data Data
Sourcing Splitting

P ——— -
1 1

Pre-processing

@ > Cleansing

data \ validation Normalization
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Feature Engineering

Missing Data Treatment
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Transformations
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Labeling
[If Supervised]

Manual
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GREENHOUSE

A CONTAINERIZED FRAMEWORK
FOR BETTER DATA X

github.com/felipepenha/py-greenhouse
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docker compose

bash Pé Python 3
python3
jupyter . .
pip3 requirements

volumes
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git hooks
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Local OS Services Container



GitOps

v1.0.0
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Local OS Services

Container



https://linktr.ee/Felipepenha

MLOps.community
12 de Maio

Participacao no Podcast
A place to discuss MLOps

An open community where all are welcome



