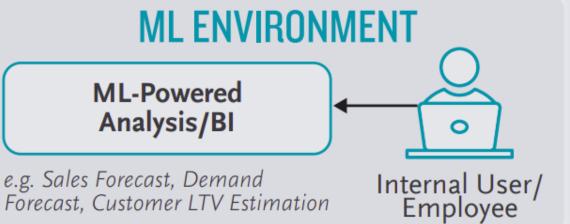


Data Science Bits

Análitico Vs Operacional

ANALYTICAL ML Human-Driven Decisions Non time-sensitive Low production Low scale Little regulation OPERATIONAL ML Machine-Made Decisions Time sensitive Real-time input data Direct connection to business impact



• 1-person team

requirements

Production service level agreement and scale Regulations and compliance Large cross functional team ML ENVIRONMENT ML-Powered Product e.g. Real-time fraud detection, Real-time pricing, Personalization, Chat Bots Customer

MLOps: "conjunto padrão de práticas para Operações de Machine Learning em grande escala"

DeepLearning.Al

A CHAT WITH ANDREW

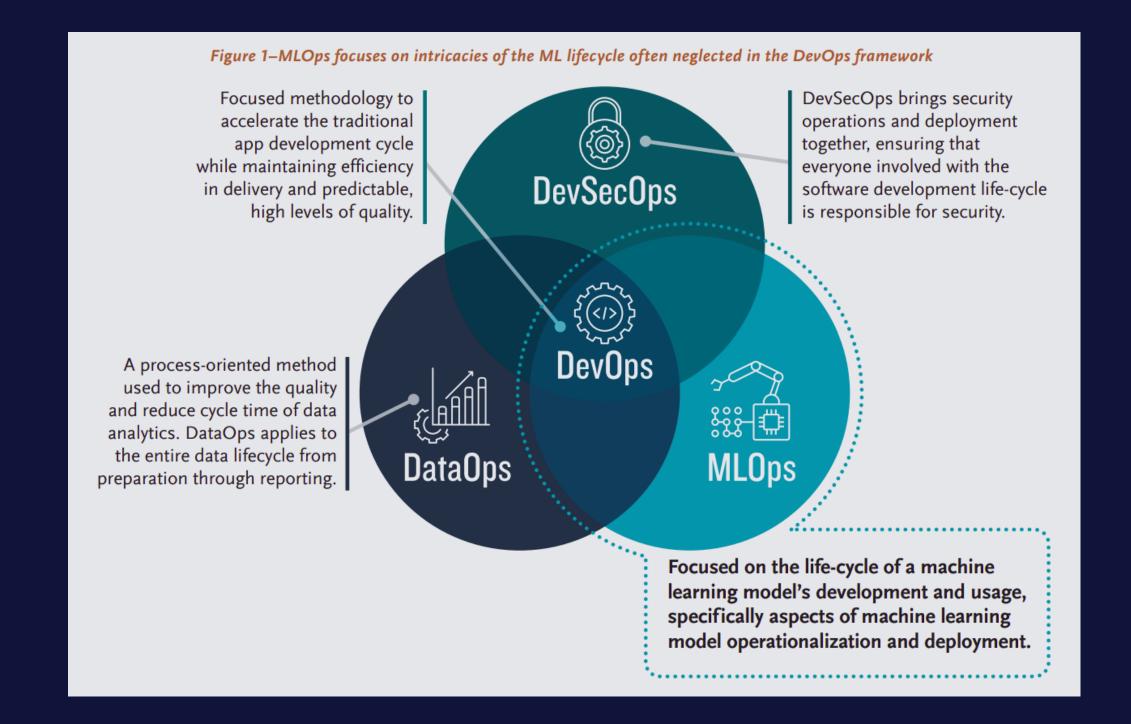
MLOps: From Model-centric to Data-centric Al

- **Wed, MARCH 24**
- 0 10 to 11am PT
- RSVP: mlops0324.eventbrite.com

MLOps ~ DataOps?

ML Eng. ~ Data Eng.?

Booz | Allen | Hamilton



"Focado no ciclo de vida do desenvolvimento e uso de modelos, especificamente aspectos de operacionalização e deployment"

COMMON GOALS OF OPERATIONAL ML

Most MLOps solutions often share common goals born from the problems encountered in Analytical ML solutions. These include the need for auditability, performance across a variety of environments, transparancy into the functioning of a model, technology that enables the AI solution to scale, automation for model updates, and solving the common issue of model drift.

Auditability: A given model will have multiple versions, a specific set of training data, and finely tuned hyperparameters. Each must be carefully tracked for versioning and testing purposes

Different Environments: Different environments for data preparation, training, and model deployment reduce speed and scalability of model deployment

Model Transparency: Individual models are difficult to understand and/or explain to others

Scalability: Models created from scratch for individual problems reduce deployment speed because of the inability to reuse and recycle code

Model Drift: Models may lessen in accuracy over time as the statistical properties the model tries to predict change in the real world

Reproducible

Reproducibility and productivity are inextricably linked. It's difficult to be productive when different team members can't reproduce each others' work. This is harder in ML than in software because test & training data and metrics need to be versioned alongside the code and environment.

Accountable

Models that are deployed without full provenance, a record of all the steps taken to create the models, can fail to be compliant, and are hard to debug. Maintaining this provenance record manually slows you down and is error-prone, so automated tooling is needed.

Collaborative

Concurrent collaboration – that is, collaboration without treading on each others' toes – is essential. In ML this is harder than in normal software engineering, because collaboration applies to notebooks, data, models and metrics as well as code.

Continuous

You're not done when you ship. In order to continue delivering value to the business, models must be retrained and statistically monitored to compensate for model drift due to constant changes in your business environment.

Singularity

(intel)
Nauta

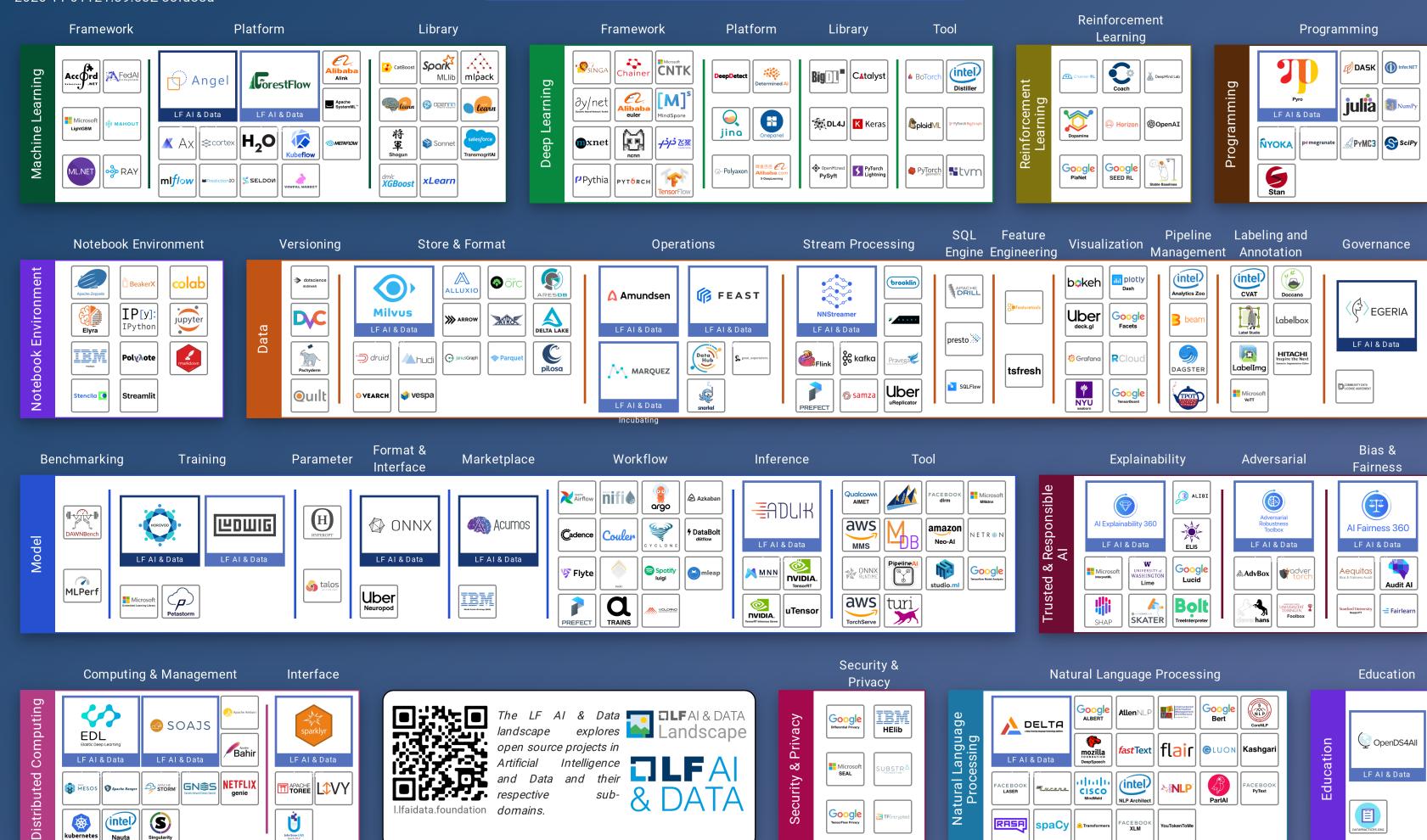
John Snow LAST Spark-NLP

See the interactive landscape at I.lfai.foundation

Greyed logos are not open source

TAPRACTICES.O

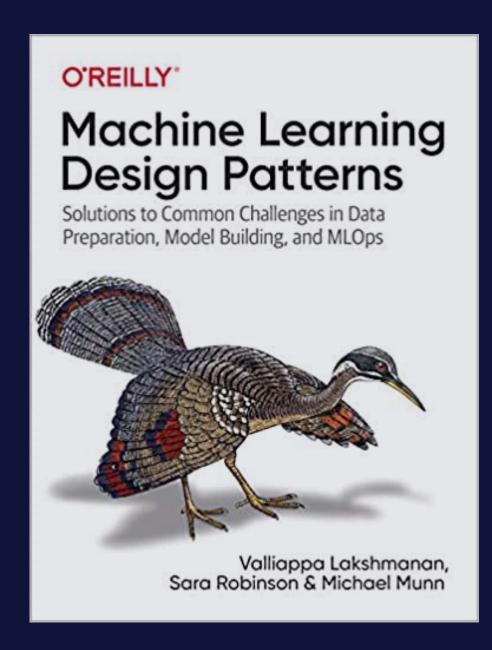
CEBOO!



Google TensorFlow Privacy

I.lfaidata.foundation

domains.



Design Patterns 1-30

- Problema
- Solução
- · Por que funciona
- · Prós, contras e alternativas

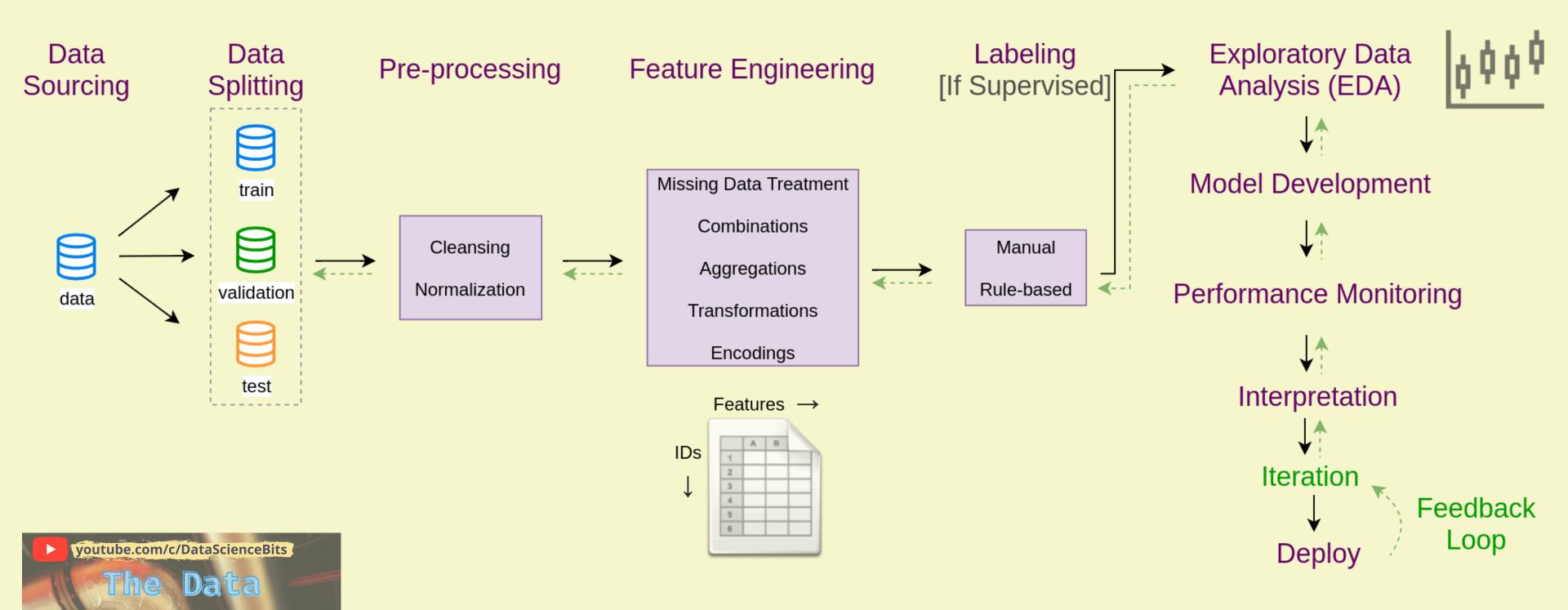
Design Pattern 26

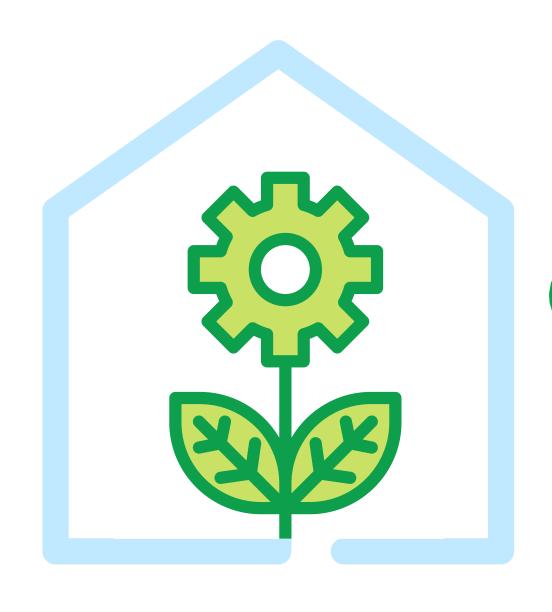
Models Real-time Data Feature Store Prediction Batch Data Features Training Features \rightarrow

IDs

Design Pattern 25

Science



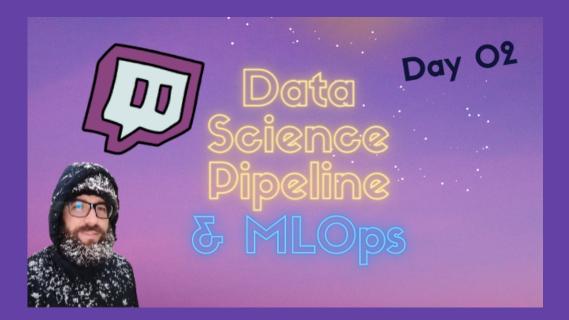


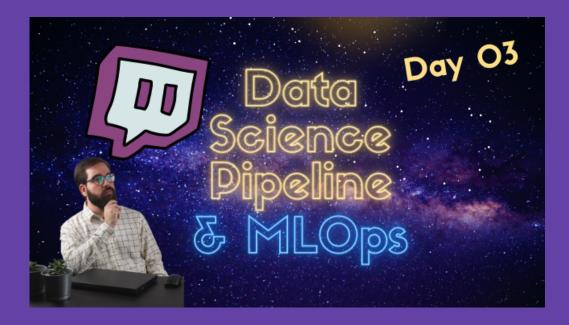
GREENHOUSE

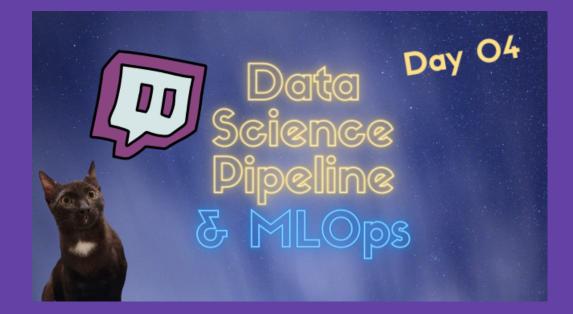
A CONTAINERIZED FRAMEWORK
FOR BETTER DATA X

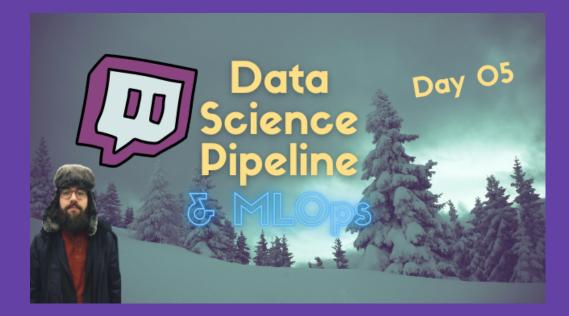
github.com/felipepenha/py-greenhouse

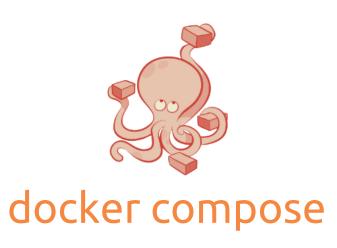
twitch.tv/DataScienceBits









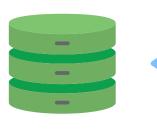


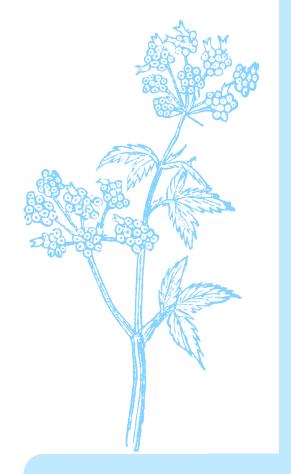
bash python3 jupyter

volumes

Python 3

pip3 requirements



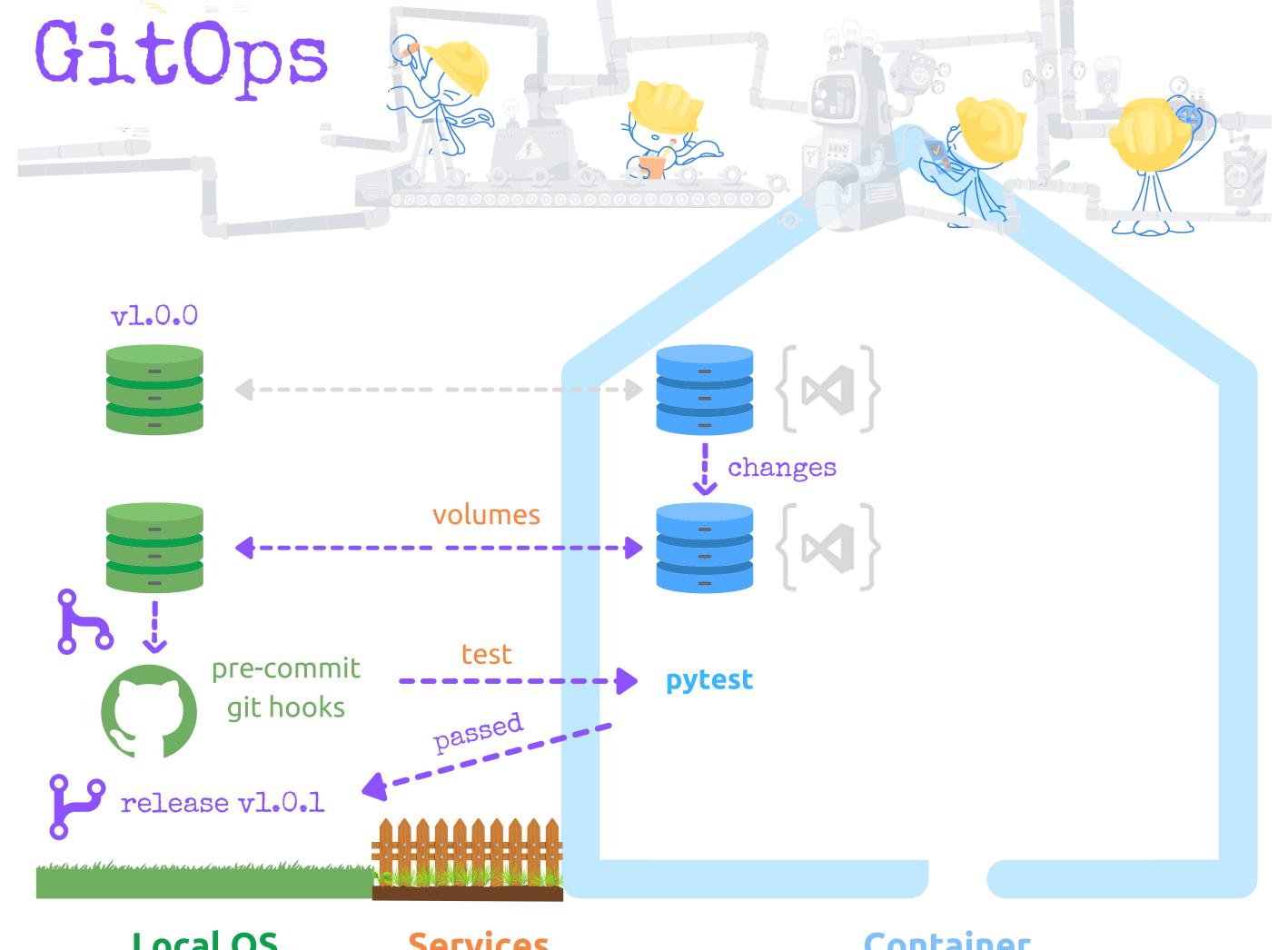


Local OS

Visual Studio Code

Services

Container



Local OS

Services

Container

https://linktr.ee/felipepenha

Muito Obrigado!

Fique Ligadx! 12 de Maio Participação no Podcast MLOps.community

A place to discuss MLOps

An open community where all are welcome

Slack com 2.5k+ usuários